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Robust strictly positive real synthesis for
the fourth-order convex combinations ™
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Abstract For the two fourth-order polynomials a(s) and b(s), the Hurwitz stability of their convex combina-
tion is necessary and sufficient for the existence of a polynomial ¢(s) such that ¢(s)/a(s) and ¢(s)/b(s) are both
strictly positive real.
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The strict positive realness (SPR) of transfer functions is an important feature of a system, and

plays a critical role in various fields such as absolute stability/hyperstability theory[l’ﬂ

(3] (s

, passivity

, quadratic optimal control*! and adaptive system theory”" . In recent years, stimulated by

[6,7]

analysis

, the robust strictly positive real systems
[8~22]

the parametrization method in robust stability analysis
have received much attention, and great progress has been made . However, most results belong
to the category of robust SPR analysis and valuable results in robust SPR synthesis are few. The fol-

lowing fundamental problem still remains openm] .

Suppose that a (s) and 5(s) are two n-th order Hurwitz polynomials, does there exist, and
how to find a (fixed) polynomial ¢ (s) such that ¢(s)/a(s) and c¢(s)/b (s) are both SPR?

By the definition of SPR, it is easy to know that the Hurwitz stability of the convex combination
of a(s) and b(s) is necessary for the existence of polynomial ¢ (s) such that ¢(s)/a(s) and ¢
(5)/b(s) are both SPR. It has been proved that, if ¢(s) and b(s) have the same even (or odd)

terms, such a polynomial c(s) always exists! 1!~ 1] ,and if n <3 and a(s),b(s)€ K(K is a sta-

ble interval polynomial set) , such a polynomial c(s) always exists. Recent results show that, if n <
3 and a(s) and b(s) are the two endpoints of the convex combination of stable polynomials, such a
polynomial ¢(s) always exists'’®7) . Some sufficient conditions for robust SPR synthesis have been
presented in Refs. [8,15,17 ~ 19]. Especially the design method in Refs. [17] and [18] is numer-

ically efficient for high-order polynomial segments or interval polynomials. and the conditions given
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are necessary and sufficient for low-order (n <3) polynomial segments or interval polynomials.

It should be pointed out that, Anderson et al ! transformed the robust SPR synthesis problem
for the fourth-order interval polynomial set into a linear programming problem in 1990 (Egs. (58) ~
(60) in Ref.[14]), and by linear programming theory, they concluded that such a linear program-
ming problem always has a solution. Thus, it was thought that the robust SPR synthesis problem for
the fourth-order interval polynomial set had been solved. But in 1993, an example which can be syn-

[15]

thesized showed that the corresponding linear programming problem had no solution*™'. Hence, for

the fourth-order interval polynomial set, on the one hand, one cannot prove theoretically the existence
of robust SPR synthesis, and on the other hand, one cannot find a counterexample that cannot be syn-

thesized . Therefore, the robust SPR synthesis problem for an interval polynomial set, even in the case

of n =4, is still an open problem!!!+12:14:15:17~19]

It will be shown in this paper that, for the two fourth-order polynomials a(s) and 5(s), the
Hurwitz stability of their convex combination is necessary and sufficient for the existence of a polyno-
mial ¢(s) such that ¢(s)/a(s) and c¢(s)/b(s) are both strictly positive real. And the conditions
given in Ref.[17] will also be shown to be necessary and sufficient for the case of the fourth-order

polynomial segments.

In this paper, P" stands for the set of n-th order polynomials of s with real coefficients, R for

the field of real numbers, (p) for the order of polynomial p(+), and H* C P" for the set of n-th

order Hurwitz stable polynomials with real coefficients.

In the following definition, p(*)& P™, ¢(+)€ P", and f(s) = p(s)/q(s) is a rational

function.
Definition 1127, f(s) is said to be strictly positive real if
(i) a(p)=3(q);
(ii) f(s) is analytic in Re[s]=0, (namely q(+)€E H");
(iii) Re[f(jw)]1>0, ¥ w €R.
If f(s)=p(s)/q(s) is proper, it is easy to get the following property .

Property 11, If f(s) = p(s)/q(s) is a proper rational function, ¢(s)€ H", and ¥ w €
R, Re[ f(jw)] >0, then p(s)E H"U H* 1.

The following theorem is the main result of this paper.

Theorem 1. Suppose a(s) = s* + a;5> + ays® + azs + a, € H*, b(s) =s*+ b;s* + b,s?
+ bys + b, € H*, the necessary and sufficient condition for the existence of a polynomial ¢ (s) such
that ¢(s)/a(s) and ¢(s)/b(s) are both strictly positive real, is

Ab(s) + (1 -1)a(s) € H*, A € [0,1].
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Since SPR transfer functions enjoy convexity property, by Property 1, we arrive at the necessary part
of the theorem .

To prove sufficiency, we must first introduce some lemmas.

Lemma 1. Suppose a(s) = s* + a;s> + a,s% + a3s + a, € H*, then the following quadratic
curve is an ellipse in the first quadrant of the x-y plane:

(a? - 4a,)x” + 2(2a; - a,ay) %y + a?y* - 2(aza; - 2a,a4)% - 2a,a37 + a} = O,

a
and this ellipse is tangent with y axis at (O,f) , tangent with the lines x = a, and a3y — a4x =0
1

a;) ( a} asay

at(al,az-—— ’
A3 =~ A104 QAeQ3— Q104

) , respectively.
a,

Proof. Since a(s) is Hurwitz stable, Lemma 1 can be proven by a direct calculation.
For notational simplicity, denote
02:= {(x,y) | (a3 -4a,)x? +2(2a; - a,a,) 2y + a,%y?
~ 2(aya; - 2a,a4)x ~ 2a,a3y + a2 < 0},
0% = {(x,y) | (b2 - 4b,)x> + 2(2bsy - byby)xy + 53y = 2(b,b,
—2byby)x — 2b,byy + b2 < O}.

Lemma 2. Suppose a(s) =s*+ a s>+ ays®+ azs + a, € H*,b(s) = s* + bys® + bys® + bys +
b€ H*, if Ab(s) +(1-2)a(s)E H*,A€[0,1]. Then Q°N Nt~ ¢.
Proof. If YA€ [0,1],A6(s) + (1-4)a(s)€E H*, by Lemma 1, for any A €[0,1],

Q%: = {(x,9) | (a%y - day)x® + 2(2a;5 — ay1a50) %y + a3 y?
- 20 @83 - 2031004) % - 205,037 + a}; < 0}

is also an elliptic region in the first quadrant of the x-y plane, where a;;: = a; + A(b; - @;),i =1,
2,3,4. Apparently, when A changes continuously from O to 1, 2% will change continuously from (2
to 0°.

b
Now assume 22 Q% =8, by Lemma 1(without loss of generality, suppose b_3 > %) ,JvE
1 @

b
[% ,f] and u 3 0, such that the following line /
1 91

12+ L 2
u v

is tangent with £2¢ and Q! simultaneously.
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Since [ is tangent with 27, consider

E LY g,
u

v (1)

(a? - 4a,)x* + 2(2a3 - aja,)xy + a?y® = 2(aya; - 2a,a4)% - 2a,a3y + a} = 0,

and since a(s) is Hurwitz stable and u 0, by a direct calculation, we know that the necessary and
sufficient condition for [ being tangent with Q7 is

uw® — av® - auv + a3v + agu = 0. (2)
Since [ is tangent with ()2 , for the same reason, we have
uv® = bv? - byuv + byv + byu = 0. (3)
From (2) and (3), we obviously have, ¥ A € [0,1],
uv? ~ a; 0% = ajuv + a3V + agu = 0. (4)

Eq. (4) shows that [ is also tangent with 2% (Y A€ [0,1]), but [ separates 2¢ and 2%, and when
A changes continuously from O to 1, 2% will change continuously from 22 to (2, which is obviously
impossible. This completes the proof.

Lemma 3. Suppose a(s) = s* + a15> + aps% + a3s + a, € H*, b(s) = s*+ b;s> + bys® +
bys + b, C H. QN NL< 4, take (x,y)E QN QL, andlet ¢(s): = s>+ s’ + ys+e(eisa

sufficiently small positive number) . Then for :((';)) and c(s) have ¥ w €ER, Re [2—(('1%)5] >

b(s)’ we
0 and Re [z—EL)] >0.

Proof. Suppose (x,y)€ QN QL, and let ¢(s): = s>+ x5 + y5s + €, >0, ¢ sufficiently
small .

For ¥ w € R, consider

[C(]w)]

(i) [(al—x)w6+(a2x— ay - a3)w4+(a3y- a4x)w2

| a(jw) 12
+ e(w® - a2w + ay4)].
In order to prove that ¥ w € R, Re [c_(&] >0, letting t = w?, we only need to prove that,
for any € > 0, ¢ being sufficiently small, the followmg polynomial f;(t) satisfies
filt):= tl(ay - 2)t* + (ax = ayy - a3)t + Cazy = agx)] + e(4? = ayt + a4) > 0,
Yt € [0, + ®).

Since (%,y)€ 2, by Lemma 1, a;- x >0,a3y - a,x >0 and [ ayx - a;y ~ a3]* - 4(a,;



4 ]

»
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- x)(a3y — asx) < 0; thus, we have
(ay - 2)t* + (ayx - a1y - a3)t + (a3y — agx) >0, Yt € [0, + »).

Moreover, we obviously have f;(0) > 0. And for any € >0, when ¢ is a sufficiently large or suffi-
ciently small positive number, we have f;(¢) >0. It means that there exist ¢, ¢, such that 0 < ¢; <
t,, and for all € >0, t€[0,¢,]U[¢,, + ®), we have f;(t) >0.

Denote

M, = el[nf]t[(al - %)t + (a3x - a1y - a3)t + (azy - azx)],

N, = sup | 8% = azt + a4 |.
s€ (e8]

M,
Then M; >0 and N; >0. Choosing 0< ¢ < — N,

s by a direct calculation, we have
fi(t) = tl(a; - )% + (a5 - a1y - a3)t + (asy - a4x)] + e(4? - ayt + a4) > O,
Vi€ [0, + o),
namely

vweR,m[§%ﬂ>o

Similarly, since (x,y) € 2%, there exist ¢;, ¢, such that 0 < 3 < £,, and for all e >0, t€
[0,t5]UL 4, + ®), we have £,(2) >0, where

fz(t): = t[(bl - x)t2 + (bzx - bly - b3)t + (b3y - b4x)] + E(tz - bzt + b4).

Denote
M, = e1[nf t[(by = x)t% + (byx — byy — by)t + (byy — byx) ],
N, = ‘ES[l‘lp‘] | 82 = byt + by l.
Then M, >0 and N, > 0. Choosing € such that 0 < ¢ <V’ we have
2
cljw)
Vo ER, Re[ 5225] > 0

M, M,

' N, } , Lemma 3 is proven.

Thus, by choosing € such that 0 < € < mm{

From Theorem 2.4 in Ref. [17], or the proof of Lemma 5 in Ref. [16], we have the following

lemma.
Lemma 4. Suppose a(s) = s*+ a;s®+ a,s2 + azs + a, € H*, b(s) = s+ bys® + bys? +

bys+ b, EH  e(s)=s"+x’+ys+z2. f YwER, Re[—&c( ]>0andR [—J—C( ] 0,
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take
é(s): = ¢(s) +r+d(s), r > 0,r sufficiently small,

é(s) é(s)

(where d(s) is an arbitrarily given monic fourth-order polynomial) . Then a(s) and 5(s) are both

strictly positive real.
The sufficiency of Theorem 1 is proven by combining Lemmas 1 ~ 4.

Remark 1. The proof of Theorem 1 shows that we have not only proven the existence, but also
provided a design method in this paper.

Remark 2. The method in this paper is also useful for high-order (n >35) polynomial seg-

ments or high-order (n>4) interval polynomial sets.

Remark 3. Our results can easily be generalized to discrete-time cases.

Remarkd4. If are both SPR, it is easy to show that YA € [0,1],

c(s)
Aa(s) + (1-2)b(s)

is also SPR.

Remark 5. The stability of polynomial segments can be checked by many efficient methods,

e.g. eigenvalue method, root locus method, value set method, etc. (6,71

References

1 Kalman, R. E. Lyapunov functions for the problem of Lur’ e in automatic control. Proc. Nat. Acad. Sci. (USA), 1963, 49

(2): 201.

Popov, V. M. Hyperstability of Automatic Control Systems, New York: Springer-Verlag, 1973.

Desoer, C. A. et al. Feedback Systems: Input-Output Properties, San Diego: Academic Press, 1975.

Anderson, B. D. O. et al. Linear Optimal Control. New York: Prentice Hall, 1970,

Landau, Y. D., Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, 1979.

Bhettacharyya, S. P. et al. Robust Control The Parametric Approach, New York: Prentice Hall, 1995.

Barmish, B. R. New Tools for Robustness of Linear Systems, New York: MacMillan Publishing Company, 1994.

Dasgupta, S. et al. Conditions for designing strictly positive real transfer functions for adaptive output error identification. IEEE

Trans. Circuits Syst., 1987, CAS-34(7): 731.

9 Chapellat, H. et al. On robust nonlinear stability of interval control systems. IEEE Trans. Automat. Contr., 1991, AC-36
(1): 59.

10 Wang, L. et al. Finite verification of strict positive realness of interval rational functions. Chinese Science Bulletin (in Chi-
nese), 1991, 36(4): 262.

11 Hollot, C. V. et al. Designing strictly positive real transfer function families: A necessary and sufficient condition for low de-
gree and structured families. In: Proceedings of Mathematical Theory of Network and Systems (eds. Kaashoek, M. A. etal.),
Boston, Basel, Berlin: Birkh#user, 1989, 215.

12 Huang, L. et al. Robust analysis of strictly positive real function set. In: Proceedings of the Second Japan-China Joint Sympo-

0~ N L bW

sium on Systems Control Theory and its Applications, Osaka: Osaka University Press, 1990, 210.

13 Patel, V. V. et al. Classification of units in H,, and an alternative proof of Kharitonov’ s theorem. IEEE Trans. Circuits Syst.
Part I, 1997, CAS-44(5): 454.

14 Anderson, B. D. O. et al. Robust strict positive realness: characterization and construction. IEEE Trans. Circuits Syst.,
1990, CAS-37(7): 869.

1S Betser, A. et al. Design of robust strictly positive real transfer functions. IEEE Trans. Circuits Syst., Part I, 1993, CAS-40
(9): 573.

16 Yu, W. S. et al. A necessary and sufficient conditions on robust SPR stabilization for low degree systems. Chinese Science



(4 J

No. 6 YU et al. : ROBUST SPR SYNTHESIS FOR CONVEX COMBINATIONS 467

17

18

19

20

21

22

Bulletin, 1999, 44(6): 517.

Wang, L. et al. Complete characterization of strictly positive real regions and robust strictly positive real synthesis method. Sci-
ence in China, Ser. E, 2000, 43(1): 97.

Wang, L. et al. A new approach to robust synthesis of strictly positive real transfer functions. Stability and Control: Theory and
Applications, 1999, 2(1): 13.

Marquez, H. J. et al. On the existence of robust strictly positive real rational functions. IEEE Trans. Circuits Syst., Part I,
1998, CAS-45(9): 962.

Yu, W. S. et al. Complete characterization of strictly poesitive realness regions in coefficient space. In: Proceedings of the
IEEE Hong Kong Symposium on Robotics and Control, Hong Kong: City University of Hong Kong Press, 1999, 259.

Yu, W. S. et al. Some remarks on the definition of strict positive realness of transfer functions. In: Proceedings of Chinese
Conference on Decision and Control (in Chinese) , Shenyang: Northeast University Press, 1999, 135.

Wang, L. et al. On robust stability of polynomials and robust strict positive realness of transfer functions. IEEE Trans. on Cir-
cuits Syst., Part I, 2001, CAS-48(1): 66.



